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Fermi Gas on a Lattice in the van Hove Limit 

T. G. Ho ~ and L. J. Landau 2 

Receil~ed August 13, 1996 

We study a Fermi gas with general translation-invariant many-body interactions 
on a ( v >/3 )-dimensional lattice. A complete analysis is given of the perturbative 
terms up to second order and the program pnt forward by N. M. Hugenholtz 
for the derivative of the Boltzmann equation is verified to second order. 
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1. I N T R O D U C T I O N  

A program to derive the Boltzmann equation for a Fermi gas in the van Hove 
limit within the framework of algebraic quantum theory for infinite systems 
was proposed by Hugenholtz, ~1 His goal was to derive the following results: 

1. The van Hove limit depends only on the two-point function of the 
initial state. 

2. The limit state has vanishing n-point truncated correlation func- 
tions if n > 2. That  is, the limit state is quasifree. 

3. The two-point function of the limit state evolves, with respect to 
the rescaled time, according to a semigroup which satisfies a non- 
linear quantum Boltzmann equation. 

4. Boltzmann's H-theorem holds (increase of entropy density). 

His approach was to control the large-time behavior of the individual 
terms in the 'Dyson perturbative expansion in the coupling strength g using 
properties of oscillatory integrals. 

Difficulties with his approach are as follows (see ref. 2 and ref. 3, w 
and Appendix C): 
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1. His method is perturbative, analyzing the series term-by-term 
without controlling the sum. The series would not be expected to 
have a uniform nonzero radius of convergence in the van Hove 
limit. 

2. Even at the level of individual terms in the perturbative expansion 
there are difficulties controlling the multiple-time integrals. 
Hugenholtz based his analysis on the following erroneous claim: 

Claim. Let 

f ( s )  = dul . . .  du,, g(ul ..... u,,) exp[iE(uL ..... tt,,) s] 

with g twice continuously differentiable and periodic with period 2re in each 
of the variables, and E a nonconstant, infinitely differentiable periodic func- 
tion. Then s-'f(s) vanishes at infinity. 

In fact the large-s behavior of such an integral depends on the detailed 
structure of the function E(u~,..., u,,), in particular on the nature of the 
stationary point. ~4~ 

Rather than using momentum-space methods as in ref. 1, we use 
/P-decay properties of the one-particle lattice time evolution kernel K,(x). 
We study here the perturbative terms for a general interaction, and verify 
the Hugenholtz program in second-order perturbation theory. 3 

In our approach certain terms are required to be zero by explicit can- 
cellation. In higher orders such cancellations will again be required, but we 
do not have a general mechanism to produce such cancellations. 

1.1. The Model 

Throughout  we shall set Planck's constant h = 1 and the mass m = 1. 
The number of space dimensions is v >t 3. 

T h e  Observables. To each point x e T/" is associated a fermion 
creation operator a(x)* and destruction operator a(x) satisfying the 
canonical anticommutation relations 

{a (x ) ,a (y )*}  =6.,...,, {a{x ) ,a (y ) }  = 0  (I) 

For the considerably simpler case of a noninteracting Fermi gas in the presence of random 
static impurities described by a random external potential, Hugenholtz 's program can be 
carried out and the sum of the series controlled Ibr a Gaussian random potential and small 
rescaled time r? 3~ 
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We will denote the Fourier-transformed operators by 

~ (k )*=(2g )  -''/2 ~ a(x ) .  e i*' '  

"~ e" (2) 
~(k) = (2re) -' '- ' Y' a(x)  e i, .., 

A" E f i r  

where k e [ -z~, ~]". The Fourier-transformed operators satisfy 

{ c~(q), ~(p)*} = 6(p - q) (3) 

An observable is a localized expression in creation and annihilation 
operators of the form 

A = ~ c19o(3, , ..... 3,,,,,,) a(),t) ~..  .a(y, , , , . )  ~ (4) 
,1' I , . . . .  I ' t l l l  I E ~ 1 '  

with 

I1~,, II, = ~ I~o(.v, ..... .v.,.)l < 
.1" l , . , , . . l ' l p l (  I E /~Tr 

The order of A is iAI =m,,.  Here a ~ denotes a creation or annihilation 
operator. We shall only consider gauge-invariant observables, so A con- 
tains the same number of creation and annihilation operators. 

The H a m i l t o n i a n .  The Hamiltonian is 

H = H I , + g V  (5) 

where 

f 
/ r  

H, ,=  ~, h(x, y)  a(x)*  a (y )  = d"p e(p) a(p)*  a(p)  (6) 
.x- ) . ~  Z v  - - ~  

Here 

i -  if x =  y 
h(x, y) = - 1/2AL(x, y) = 1/2 if Ix-- y] = 1 

otherwise 

and the energy e(k) is a sum of the one-dimensional energies, 

e ( k ) = ( 1 - c o s k t ) +  ... + ( 1 - c o s k , . )  

(7) 

(8) 

for k = (kt,  k2 ..... k,.). 
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The interaction strength is g and the translation-invariant self-inter- 
action V has the form 

V= ~ W(x) (9) 
.v ~ ~ "  

where W ( x )  is the translate by x of the gauge-invariant interaction 
density W, 

W= ~ r ..... Y , , , ) a ( Y ~ ) n ' " a ( Y , , , )  ~ (10) 

w i t h  I1~11, < oo. H e n c e  

V= ~. ~ ~(y ,  ..... y , , , ) a ( y ~ + x ) ~ . . . a ( y , , , + x )  ~ 
A' E ~ r  .1" I . . . . . . I ,  m ~i 77 r 

The order of V is I vI = 1 w I  = m.  
An important special case is the two-body interaction, 

(11) 

v =  1/2 Z ~(y-x)  a(x)* a(y)* a(y) a(x) (12) 
x ,  y r  Z ~' 

where ~ ( x ) =  ~ ( - x ) .  The free time evolution is given by A, = ct~ ), where 

a,(x) ---- o~~ a( x ) = ei'H"a( x ) e --i,H,, 

= ~. K , ( y - - x )  a ( y )  (13) 

and 

a,(x)*= Y' K , ( y - x ) a ( y ) *  (14) 
I '  E ~ r  

We write Eqs. (13) and (14) more compactly as 

a, (x)~= Z K , ( y - x ) n a ( Y )  ~ (15) 
y ~ Z  r 

where K, ~ stands for either K, or / ( , .  
The full time evolution is ~f(A) and is given by the Dyson pertur- 

bative expansion 

ctf(A)= ~ (ig)" d r , . . .  ' ' d t , [ V , , [  .... [V,,,A,],.. .]] (16) 
n = 0 1 
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T h e  State. It is supposed that the initial state S of the Fermi gas 
is gauge-invariant, translation-invariant, and l~-clustering. The clustering 
property is formulated in terms of the truncated correlation functions: 

),,,(x I ..... x,,) = S r(a(0)~, a(x  I )~ ..... a(x~)  ) (17) 

which for an /~-clustering state satisfy 

[ ),,,(,x" I ..... xp)[ < ov (18) 
m I , . . . ,  Xp  

In the case of the two-point function we define 

~)(k) = ~ ),,(x) eik . x  (19) 
.v  

Then 

S(a(k)* a(/)) = ~,(k) O ( k - / )  (20) 

1 .2 .  G o a l s  a n d  Results 

The van Hove limit is defined by rescaling the coupling strength g to 
2g, introducing a rescaled time "c = j,2t, and taking the limit 2 ~ 0. The 
expectation value of the observable A in the state S evolved to rescaled 
time r with rescaled coupling strength 2g is S(o~:.~_,.,A). 

According to the Hugenholtz program, one would like to show that as 
2 ~ 0 :  

(a) The time-evolved state converges to an asymptotic state: 

where the asymptotic state ~ depends only on the two-point 
function of the initial state S. 

(b) The asymptotic state ~ is quasifree, 

~ ( a ( y , . ) *  �9 - �9 a ( y , ) *  a(z , ) . . ,  a ( z , . ) )  

= ~. a(H)  ~ ' ( a ( y ,  )* a(zn~l ,)), --- ~ ( a ( y , . ) *  a(Zn,. ,))  
17 

where the summation is over all permutations H of { 1, 2,..., r} 
and a ( H )  is the sign of the permutation H. 
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(c) The asymptotic two-point function ),~ satisfies the irreversible 
nonlinear quantum Boltzmann equation (43) in the case of the 
two-body interaction (12). 

We have developed general methods which are useful in studying (a)-(c) in 
perturbation theory. We have verified that (a)-(c) hold to second order in 
the coupling strength g. 

The results of the paper can be summarized by the following theorems. 

Theorem 1. Let S be a translation-invariant, l~-clustering, gauge- 
invariant state. Let ~ be the gauge-invariant, quasifree state with the same 
two-point function as S. To zeroth order, the time evolution is just the free 
evolution given by S, = S t.c~,.~ The time dependence of the state S under the 
free evolution satisfies the following: 

1. If n >~ 4, for any c~ > 0, there is a constant Ca such that 

iS F(a(x,)= ..... a(x,,) ')l ~< C,,(1 + It[) .... .4+,~ 

2. I rA =a(x~)=. . .a(x , , )  n, then ( [S , (A) - -~(A) I  <<. Ca(l + It[) ' ' '+a  

3. l i m , _ ,  S, = ~ in the weak*-topology on ~*.  

Theorem 2. Let S be a gauge-invariant, translation-invariant, and 
It-clustering state, and both A and V are gauge-invariant. Then the first- 
order perturbation terms of (22) are zero in the van Hove limit. 

Theorem 3. The van Hove limit of the second-order term in the 
Dyson expansion exists and satisfies the quasifree condition (b) to second 
order in the coupling constant g. All contributions to the second-order 
terms from higher order truncated functions of the initial state S tend to 
zero. 

Theorem 4. The Boltzmann equation [cf. (c)] is satisfied to 
second order in the coupling constant g in the case of the two-body inter- 
action (12). 

2. U N I F O R M  B O U N D S  FOR THE LATTICE KERNEL 

In one dimension the free lattice evolution K, is given by 

K l l ~ ( x ) = ( 2 n ) - J  dke-i,:~k~, i.,-/,- i,.. . . . . . .  e = e  1 J.,.~[) (21) 

where e (k )=  1 - c o s  k, and J,,(t) is the nth-order Bessel function of the first 
kind. 
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In v dimensions,  K , ( x )  = K~I ~ >(x,)---K~, l ~(x,.) for x = (x ,  ..... x,.). 
Essential to our  discussion are /P-bounds on the Bessel functions. In 

ref. 5 uniform bounds  on the Bessel functions are given as 4 

IJ,,(t)l ~< 0.7858 Itl-,,.3 

[j,,(t)14 < 2 log(l  +zrt)  
g t 

Using these estimates,  we can prove  the following propos i t ion  (see also 
ref. 3). 

Proposition 5. 1. 11K, II2=I. 

2. IlK, lira_ ~< A(1 + I tl) "/3 for some constant  A > 0. 

3. Fo r  any 6 > 0  there is a cons tant  B,~ such that  IIK, II4~< 
B,~(1 + ltl) ..... 4+,~ 

4. For  any 6 > 0  there is a cons tant  C,~ such that  IIg, ll3~< 
C,~(1 + Itl) -''/6+'~ 

5. For  any 6 > 0  there is a constant  E,~ such that  IIK,[It,~< 
E,~(1 + Itl) ,.,4+,~ for all p>~4. 

3. THE PERTURBATIVE TERMS 

We are considering the t ime evolut ion of  the state S~ "~ given by 

S ~ " ( A ) = S ( o ~ ' ( A ) )  

;,' ) = S  (i2g)" d r , . . ,  d r , [ V , , , , [  .... [ V,,, A,] , . . . ]  ] 
I t  0 ) ) 

(22) 

We will assume the initial state S to be gauge- invar iant ,  t ranslat ion-  
invariant,  and l~-clustering, V of  the form (I1) ,  and A of  the form (4). 
In order  to simplify the presentat ion,  we will supress inessential indices. 
In (11 ) we. supress the indices on the y-var iables  since the sum over  
Y,, Y2 ..... y,,, is control led by q~(y~, Y2 ..... y,,,) and will be est imated by 
I1r t imes an upper  bound  of the remaining factors which is independent  

4 The asymptot ic  behavior for large t is in fact "~ 

L I log /  
IJ,,(t)[4 ~ 

~ . 2  I 
n =  - �9 
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of  the y-variables.  Lett ing y represent  any and all the y-variables,  we can 
abbrevia te  (11 ) as 

V= ~ Cb(y) ~ a(x + y)~. . ,  a(x + y)~ 

m f a c t o r s  

(23) 

where each occurrence o f x  is shifted by a different y-variable.  Similarly (4) 
becomes (setting xo = 0) 

qb(,(y) a(xo + y)~.., a(xo + y)~ 
. . . ,;  

Y 

t n l ~  I h c t o r s  

(24) 

where each occurrence of  xo is shifted by a different y-variable.  
After subst i tut ing (23) and (24) in (22) we expand  the c o m m u t a t o r s  

giving 2" terms. The state S is then expanded as a sum of products  of  
t runcated functions S 7-. A typical t runcated function is of  the form ( t o - - t )  

S r(a,,,(.~i, + y)~ ..... a,,(Xi r + y)~) 

= ~. S T(a(zl )~ ..... a(z,.) ~) K,~(z~ -- -~i,- y )n . . .K~( z , . - -~ i , -  Y)~ 
21  . . . . ,  . - r E :  ~ v  

= ~ 3',- - t( w t . . . . .  w , . _ ,  ) K . i  ' ( u - Xi ,  - -  Y )  ~ 
II, i t '  I . . . . .  I t '  r _ I 

- )~ x K , , ( u - - . ' % - - y + w l ) ~ ' " K , j ( u  X i - - y + w , . _ j  (25) 

where u = z i, Wi = Zi+ i - z i, and j t  ~ { 0, 1 ..... n} for k = 1, 2 ..... r. 
Again we simplify the expression by supressing inessential indices, as 

the sum over  w-variables is control led by 7,._~(wt ..... w,.) and will be 
est imated by 117,.-al]~ t imes an upper  bound  of  the remaining factors which 
is independent  of  the w-variables. Let w represent  any and all the 
w-variables or  zero. Then (25) can be abbrevia ted  as 

ST(a~,,(x~, + y)~ ..... a,,r(Xj, + y)~') 

=~'7,._,(w)~K,,,(u--xi, +w-y)~.. .K,jr(u--A)r+w-y)~ ( 2 6 )  
w u 
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where each XJ is shifted by a different w-variable (or zero) and a different 
y-variable. In the special case of the two-point function (r = 2), the sum 
over u in (26) can be carried out giving 

S r ( a S ( x h  + y ) * ,  a,,,(.~h + y ) )  

= ~ y l ( w )  K 5 9 , ( .xg , - -xk+w--y)  
2 - -  

It '  

(27) 

where y now also denotes a difference of y-variables. 
Consider a typical n th-order term of the perturbative expansion 

consisting of: 

1. ~ two-point contributions with times t; and {i, where i< j, 
i , j = 0 ,  1 ..... n. 

2. kt truncated functions labeled 1 to p, with the j t h  truncated func- 
tion of order fljo + ' "  +//j,,/> 4 with fl~k creation-annihilation 
operators at time tk, k = 0, I, 2 ..... n. 

An upper bound for such a term is given by the product of I[~o[[i [[q)l['~ 
, + �9 �9 �9 + r, =mn + mo, times the supremum II~',,-, !l, "'" I~,;,- ,ll,, where r, 

over y s and w's of 

dt~..,  dt,, ~ ~ ~I ] K , , - , , ( X i - X , + w -  y)l% 
XI . . . . . .  Yn t t l '""t t / ,  O ~ i < ] ~ / t  

x I"[ IK,~(u~- xk + w - y)i& [~(t, t, ..... t.)i 
I <~.]<~p. 0 <~k <~n 

(28) 

where ~(t, t~ ..... t,,) is the product of all the truncated functions, each of 
which contains only operators all at the same time. 

This expression (28) will be bounded by/~-norms of the K-functions, 
and these norms are translation-invariant and hence do not depend on the 
w- and y-variables appearing in the argument of the K-function. We will 
supress the w- and y-variables, obtaining the final abbreviated expression 
for the upper bound: 

~ltl fo I n  - i 

~<(,~g)"c dr, ... dr,, Z ~ 1-I IK,,_,,C~:j-x,)P% 
~ 0  x t . . . . . .  x-,, u t . . . . . z S ~  O<~i<. /<~n 

x 1-I [K,}uj--xk)l& I~(t, t, ..... t,,)l (29) 
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�9 D 

ti 
representing a~ (.) 

A 
w '* 

ti 
representing al, (.)* 

Fig. 1. Creation-annihilation oeprators. 

We will bound ]~] by a constant as Sr(a, , (x~)  =...  (a,,(x,.) ~) is bounded 
independent oft . /and x~ ..... x,. since I]a,(x)=ll = 1. We will use a better bound 
when we discuss the contributory terms. 

4. D I A G R A M M A T I C  R E P R E S E N T A T I O N S  

A general N-point truncated function is represented by a bubble with 
directed lines joining the various points t, tj ..... t,. Each line represents a 
creation-annihilation operator, a creation operator at time t~ by a line into 
t~ and an annihilation operator at time t~ by a line out of t~ (see Fig. 1). 
In the case of the two-point function the bubble is not drawn (see Figs. 2 
and 3). 

5. Z E R O T H - O R D E R  T E R M S  

The zeroth-order term in the Dyson expansion (22) corresponds to the 
free evolution. We will now prove Theorem 1: 

P r o o f  of  T h e o r e m  1. 1. By (25), forn>~4, 

iS 7(a(x, )" ..... a(x,,)")l 

. )~ = ~. ?',,_,(wl ..... w,, i ) K , ( u - - x , ) =  . . K , ( u - x , , + w , ,  I 
I t ,  w I . . . . .  w n -  I 

~< I1:)',,-, I[, IlK, I1',', 

~< C,~(I + Itl) ....... q+'~ 

by Proposition 5.4. 

2. Since S, (a(x)*  a ( y ) ) =  S(a(x )*  a(y)),  the result follows from 1. 

3. This result follows from 2. II 

v 

t j2 tjl  
s7(%, %, 

Fig. 2. Two-point function. 
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f 

,( 
t 3 t.~ 

r 
t 

Fig. 3. sr(a,,(xl )*, a,;(x,_)*, a,,(x.~), u,(x4)). 

6. FIRST- A N D  S E C O N D - O R D E R  T E R M S  
IN THE LATTICE M O D E L  

In this section we show that in second-order perturbation theory in 
the van Hove limit (1) the limiting state depends only on the two-point 
function of the initial state, and (2) the limiting state has vanishing N-point 
truncated functions for N >  2. 

By using Proposition 5, in particular, 

IlK, 113 <<. C,~( 1 + t) -,./6+,~ 

][g, l l t ,<~f,~(l+t)-"/4+'~ for p>~4 

we will give estimates for the first- and second-order terms for v i> 3 and 
t > 0. To ease future calculations we use the following lemmas: 

L e m m a  6. Let S be a translation-invariant state. Then 

s Y. W(x),A ]) 
if A =a(u )*  a(v) and W = a ( y ) *  a(z).  

P r o o f  We have 

= 0  

.S (E 
\L .~. ~ ~v 

= S ( a ( u  + 3' - - )*  a(v)  - a (u)*  a(v - y + z ) )  

=)'I{I)--I'I-- y-I-E)--9'I(O-- Y"I-E--ll) =0 I 

822;87/3~-24 
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R e m a r k  7. If S is just a translation-invariant linear functional, the 
same argument applies. In particular, we conclude: Let S be a translation- 
invariant state. Then 

if A = a(u)* a(v) ,  W =  a ( y ) *  a(z) ,  and W' = a ( y l  ) ~ . . .  a(y,,,) ~. 

Lemma 8. Let ~ be a gauge-invariant and translation-invariant 
quasifree state. Then 

y~ &[ W(x), A])=o 
N E ~  I' 

if A = a(u)* a(v) and W =  a(yl )*---a(Ym)* a(z])--- a(z,.). 

Proof .  We have 

= ~ ( - 1 )  '' '§247 $ ( a ( y ~ ) * . . . a ( y i _ [ ) * a ( y s + ~ ) * . . . a ( y , , ) )  
h i =  [ 

x { g ( a ( y A *  a(v + x ) ) [ 6 ( Z / ,  u + x )  -- S (a (u  + x ) *  a(zj))] 

-- $ (a (u  + x ) *  a(.~/) )[ 6(v + x ,  Yi) -- ~ ( a ( y i ) *  a ( y  + x))] } 

= ~ (--1) ' ' '+i+j+l , ~ ( a ( y j ) * . . . a ( y i _ l ) * a ( y i + t ) * . . . a ( y , , ) )  
i , j =  1 

x t~, i(v - u + z,  -- Yt  ) - ~ Y t( v + x -- Yi)  71(Zt--  u -- x )  
k ?,- 

- 7~(v -u  + z~ - yj)  + ~ 7~(v + x -  3,3 7 ~ ( - ~ - u -  x) l =O 
3 
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where we have used 

,~(a(x) a(y)*)=6(x, y)--,~(a(y)* a(x)) | 

Lemma 9. Let S be a t r ans l a t ion - inva r i an t  state. Then 

,([ ~ w,x, A . I ) , ( [  ~ w,x, A l) 
.v  @ ~ '  A" E 2~ v 

if A = a(u)* a(v) and  W =  a(yt )~... a(y,,,)z. 

Proof. Note  that  for any  B e 9.[, 

I B, ~, a.,.(u-x)*a,.(v-x) 1 
. , , . E ~  v 

A'. I t  I . l "  I 

=IB,~.a(ul)*a(v+ut-u)] 
t l  I 

. r  i, 

which is independen t  of  s. So 

E~ ~ ~ ~ s,.o~v_x,,] E~, ~ a,,, x,,'o,v ~,,] 
.x" E ~ r  .v  E Z t' 

for any  s, t E R. Thus  

__,([ w,, z o,,,,_x,.o,,v_x,]) 
.v E 2Yr 

_- ( [ ,~  w, ix, 
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R e m a r k  10. In the first-order case 

we have from the structure of the commutator  that there is at least one 
two-point contribution, that is, c%~ >/1. In the nth-order case 

we have 

6.1. 

. i -  I 

y'  ~o>~1 fora l l  l<<.j<~n 
i = 0  

F i r s t - O r d e r  T e r m s  

In this subsection we will prove Theorem 2. 

Proof  of  Theorem 2. Consider the first-order perturbative terms 
of (22), 

i2g f l  dt, S([ V,,, A,])  

From Eq. (29) a first-order term is bounded by 

f2 <~2gC dt, ~. 2 I g , - , , ( x , ) l  =''' 
.v I tr , . . . .  l ilt  

• IK,(u,)l/~,,, I K , , ( u , - x ~ ) l / ' ' ' . . .  IK,(u,,)l~', ''' IK,,(u,,-x,)l~', '' (30) 

In (30) if we sum over the uj first and then over x~ we obtain 

XgC dt, IIK, II(~'~ II(I~'"IIK,,II(II '', IIg,-,,ll"',,,, (31) 

where ri = flio + fly i >~ 4 for j = 1, 2,...,/2. 
Note that for all x s 7/", 

~ F(u) G(u- x)=~" F(u + x) G(u) (32) 
14 I t  
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If we label (30) using 

7j=min{fl jo,  flj,} >11 

6j= max{fljo, flj,} >/2 

t if ~'j =/~jo 
s j=  t~ otherwise 

S j=  {;' if 7j = fljo 
otherwise 

for j =  1,...,p and shift the x~ dependence to K.) by (32), then (30) becomes 

f2 ,tgC dr, 2 Z IK,_,,(x ) ", 
�9 v I l / l  , . . , ,  1lit 

x IK,. ,(u,-x,)l~"' . .Ig. ,v,(u, ,-x,)l  ~;' Igs,(u~)l '~'... Igs,,(u,,)l '~" 

<<.2gCI, idt ,  IIg,-,,ll~" IIg.,,ll~:"-" g,; Ilk Ilgs, II;I', liKe, II~J: (33) 

with r=eo~ +Tt + ' "  +7~, and where we have summed over xt first and 
then the UJ" 

By Remark 10, cot ~> 1, we therefore consider the following cases: 

1. If~o~ > 2  a n d p = O ,  then by (31), (30) is bounded by 

<~2gC dtl IIg,_, , l l  ='" 
~ t 0 1  

<~2gC~. d t l ( l + t - - t ~ ) - " / 2 + ' : ~ O  

in the van Hove limit (We use e to denote a positive constant which can 
be made arbitrarily small). 

2. I f  o~ol>~2 and p>~l,  then, as fljo+flit>~4, j = l , 2 , . . . , p ,  by (31), 
(30) is bounded by 

J'o ~" IlK, /~'" ]IK, t ]I{~" "" IIK, II(I~'o I[K, t I[{I~" <~2gC dtl ILK,_,, =,,, , 

<~ 2gC~. dt l ( l + t l ) - "/z + '; -* O 

in the van Hove limit. 
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3. I f  OLo~ = 2 and It = O, then such terms can be writ ten as 

Y" S([ W'(x), A']) ~(t, t,) 
.x- 

where r W ' I = I A ' [ = 2  and ~ contains  only t runcated functions with 
opera tors  all at the same time. Then by L e m m a  6 these terms are identi- 
cally zero. 

4. I f  ~ot = 1, then p 1> 1. Moreove r  fi, >/3 for some k = 1 ..... It in (33). 
[Suppose  not. Then ~ j = 2  tbr all j =  1, 2 ..... It and as ) , i+ di (>/4)  is even for 
all j =  1, 2 ..... lt, then ){j= 2 for al l j .  But this implies, as c%~ = 1, that  IAI and 
[ V I are odd, contradic t ing the gauge invariance of  A and V.] We also have 
r=c%~ +~,~ + . . .  + ) , ,  ~>2. Then (33) is bounded  by 

f (  t 

~2gC,: d t l ( l+ t j ) - ' ' 2+ ' : - -*O 
) 

in the van Hove  limit. I 

Hence there are no contr ibut ions  f rom first order.  

6.2. Second-Order Terms 

In this subsection we will prove  T h e o r e m  3. 

P r o o f  o f  T h e o r e m  3. The  second-order  terms can be writ ten as a 
sum of  expressions of  the form 

(iXg) 2 'd t ,  dt2 ~ S ([W,_ , , ( x2) , [W, , , ( x , ) ,A ' , ] ] )~( t , t , , t , _ )  (34) 
0 ) 

v I . . v~  

From (29), the expression (34) is bounded  by 

<~ ('~g)2 C fl dtt f, i' dt2 ~. ~ ,K,- , , (x,) l  =''' 
.g I . .X* 2 It I . , . , ,  till 

x IK,_,e(xz)l =,,: IK,_, , (x ,_-x ,) l~ ' ,  '- 

x IK,(u~)l/~,,, rK,,(u~--xt)[/~'' TK,~_(u~-x2)r/~'-~ .- .  IK,(u,,)l/~, ,'' 

x IK,,(u,,--Xl)l/6,' IK,_~(u,,-Xz)l/J, ,~- (35) 
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[A'[ = % t  + % 2 + f l . ~ +  "'" + f l . o ~  > 2  

IV, I = l W ,  I =~o, +~ ,_ ,+ /L ,  + - . .  +/31,, >~2 

I G I  = IW_,l =~o, +~x,2 +,O,_, + -.. +/~1,,_ > 2 

Quasifree Second-Order Terms. Consider first the quasifree case. 
that is, terms with two-point functions only (p =0) .  Then (35) is reduced 
tO 

. v  t 

x ~  Ig,_,.(x2)l ="-' IK,, _ , : ( x , - x , ) l  ~'-' 
.x- 2 

The sum over x2 is bounded by 

(36) 

IlK,_ ,. II ~"-' ILK,,_ ,. II/~. '= 

where p = c~o~ + cq, = IV, l -Then the sum over xt is bounded by ILK, ,, LI ~''' 
- - - ~cOl �9 

Therefore (36) is bounded by 

i(I f (I I (2g) -~ C dtt dt: flK,_,, I1~',', IIK,_,_~ I1,~, ''-' ILK,, _,~ I1~': 
) I 

(37) 

We can also rewrite (36) as 

<~(2g)'-CI~dttf fdt2~.lK, ,.(x2) ] ~'-' 
" ' 2  

x ~  IK,_,,(x,)l  =., Ig,,_,.(x,_-xt)l =,'- 

The sum over x t is bounded by 

(38) 

ILK,_,, IIq"' ILK,, _,~llq '-~ 

where q = ~ol + cqz = I V~ I. Then the sum over x_, is bounded by IlK,_ ,2 II :i',-'_," 
Therefore (38) is bounded by 

f• | '  ILK,,_,, 
r l  

(2g)2C dt, dt2 llK,_,_l[~"-,_ llK,_,,ll,,~" _11,/ ~0 
(39) 
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We can also rewrite (36) as 

<<.(2g)2 C ~ dt, fo' dt2 ~ lK,,_,,(.,'2)l ~''- 
X 2 

• IK,_, , (x,) l  "~" IK,_,,_(x2+x,)l ='- (40) 
x I 

where we have shifted the x~ dependence from K,, ,2 to K,_,._ The sum 
over x j is bounded  by 

IlK, _,, II ~"' IlK,_ ,, [I >'-' 

where r =~ol  + c%2 = IA'I. Then  the sum over x ,  is bounded  by ILK,, _,~ 11 ='-" 
- - ~ ' 

Therefore (40) is bounded  by 

(2g)2CI(i dt, lf'dt211K,,_,z[l:121lK,_,,ll:'" llK,_,,H:"2 (41) 

By Remark 10, ~ot >/I and ~o2+~2>~ 1. Moreover ,  by Lemma 8, IV21 > 4 ,  
so 0~o2 + a,2 = I Vzl t> 4. We consider the following cases: 

1. If ~ o t = l ,  then ~oz>~l, as a o l + ~ o 2 = l A ' l ~ > 2 ,  and =12>_-1, as 
0{.01 " } - 0 ~ 1 2  = I V l l  >2 .  

(a) If ~xo t = 1 and ~oz = 1, then at 2 >/3, and (39) is bounded by 

<~(2g)2 C~.I(i dt, Ii'dt2(l +t,-t2)-"/2+~: 

which is of  order  r in the van Hove  limit (for e < v/2- 1 ). These terms 
correspond to the graph of  Fig. 4. 

Fig. 4. Contributory terms. 

w 
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(b) I f  COo, = 1 and Or then since ~r +~o_~ = 1.4'1, which is even, 
it follows that 0%2 >/3. Then (39) is bounded by 

~<(2g) 2 C,: dt,  dt2(1 +t-- t2)-" /2+':- - -~O 

in the van Hove limit. 

2. I f ~ o ,  =2 ,  then if Ia'l =2 ,  

B=[V,,A'] 

= ~ a ( y , - - z i + u ) * . . . a ( y , , , - - z i + u ) *  
i=, 

x a(z ,  -- zi + u ) . . .  a ( z i _ ,  -- zi + u) a(v)  a (z i+,  -- zi + u ) . . .  a(z,,, -- zi + u) 

-- ~. a ( y t - -  y i + v ) * . . . a ( y i _ l -  y i + v ) *  a(u)*  
i = l  

x a(y~+l -- Y i + V ) * ' " a ( Y , , , - -  Y i +  v)* a(z l  -- Y i +  v ) . . . a ( z , , +  Y i +  v) 

As 0%,= 2, then a(v) contracts with one of the a ( y k -  Z~ + U)*'S and a(u)* 
with one of the a ( z k - - y i + v ) ' s .  Then for each i , j = l  ..... m we have the 
factorization (up to an overall _+ sign) 

S ( a ( y / -  zi + u)* a(v))  a() , ,  - zi + u ) * . . ,  a ( y / _  i - zi + u)* 

x a(.v/+ t - zi + u ) * . . ,  a(y,,,  - zi + u)* 

x a ( z ,  - z i + u) .. . a ( z  i_ , - zj  + u) 

x a(z;+, - - z i + u ) . . . a ( z , , , - - z ~ + u ) )  

- - S ( a ( u ) *  a ( z l -  y i  + v)) a ( y ,  - y j +  v)* .. . a(y . i_ ,  - Yi + v)* 

x a ( y j + ,  -- Yi + v)* . . .  a ( y , , , -  zi + u)* 

x a ( z , - -  y j +  v ) . . . a ( z  i_ ,  - y / +  v) 

>5. a(zi+ , -- )~/ + v) . . . a(z,,, - Y i  + v)) 

= ~ , ( . v / - z , + , - o ) { r  . . . .  - r , , _ . , )  c 

where 

�9 )*. . .a(y , , , )*  C =  a(yl  )* . . .  a(yj_  i)* a(Yi+ i 

x a ( z , ) - . . a ( z , _  ,) a(zi+ ,)'" "a(Zm) 
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But 

s([  v_,, r,,_., c ] )  = s ( [  v2, r,, _C]) 

as V2 is of the form Y.,. W(x). Therefore such terms are identically zero. So 
suppose otherwise, I A'I >/4, that is, ~o2 >~ 2. Since ~o2 + s t ,  >~ 4, then (37) is 
bounded by 

~<(2g) 2C,: dt I d t2 ( l  + t-t2)-"/2+':--+O 

in the van Hove limit. 

3. ff'~o~ i>3, then as oto2+cx02>~4, (37) is bounded by 

y, ld, f" ~(2g)2C,:  j d t 2 ( l + t - t n ) - " / 2 + ' : ( l + t l - t 2 ) - " + " ~ O  
) 

in the van Hove limit (we also used t -  t_, ~> t~ - t2). 

Non-Ouas i f roo  S e c o n d - O r d e r  Terms. The second-order terms 
which contain at least one higher order truncated function (/1/> 1 ) can be 
shown in the same manner to give no contribution in the van Hove limit. 
These are treated in detail in Chapter 3 of ref. 7. 

Contributory Terms. In the above analysis, we have bounded the 
factor [~] by a constant. If the remaining factors in (29) are zero in the van 
Hove limit, then so is the full expression. This is so in all cases except for 
the second-order terms of the form of Fig. 4. We will reconsider this case. 
These terms are bounded by 

(2g)2 C ~s ctt, fs  
. v  I , . v ~  

x l~(t, t,, t2)l 

]K,_ ,,( x , )1. ]K,_ ,,_( x2)] " IK,, _ ,,( x2 - x , )l 1t''- 

(42) 

where fl~, >/3. If ~ includes a higher order function, then by Theorem 1.1 

I~] ~ C,:(1 + t;)-"+~' ~< C,:(1 + t2) -''+': 

Therefore (42) is bounded by a constant times 

)~ dtn d t 2 [ ( l  +t2)( l  + t , - t 2 ) ] - " + ' : - * O  
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in the van Hove  limit. If, however, ~ is composed  entirely of  two-point  
functions, then ~ is a constant  and such terms do contr ibute in the 
van Hove  limit. II 

7. B O L T Z M A N N  E Q U A T I O N  

For  the remainder of  the discussion we shall consider the two-body 
interaction (12). The cont r ibutory  terms are o f  the form of  Fig. 5 (or with 
the directions o f  all the arrows reversed) times a factor ~ which is a 
product  of  two-point  functions with creat ion-annihi la t ion operators  all 
from A. 

Hugenhol tz  wanted to show that  in the van Hove  limit 

lira S(o~.~-,_~A ) = ~ ( A  ) 
2 ~ 0  

Moreover ,  the two-point  function 

7~(3'2 -- Yl) = ~ ( a ( y ,  )* a ( y2 ) )  

should satisfy the nonlinear  quan tum Bol tzmann equat ion 5 

d ~ f l k , , )  -' ng 2 f dk  dl dm [ ~ ( k  - k o )  - ~ ( k  B m ~ ~ 

x 6 ( k  + l - m - ko) 6(e (k )  + e(l)  - e (m)  - e(ko)) 

x { ~i~(k) f f ( l ) [  1 - ~ ' ( m ) ]  [ 1 - ~f(ko)] 

- ~;~(k o) ~ f ( m ) [  1 - ~ ( k ) ] E  1 - ~ f ( 1 ) ]  } (43 )  

Up to second order, (22) can be written as 

= s ~:',,(a) + g,~S ~'_':~(A) + g'-,~'-s 5-'-':,(A) + . . .  

Taking 2--* 0, we have the following results: 

In zeroth  order, this is just the free evolution: 

~ '  :=  lim S~~ lim S , = ~  (44) 

by Theorem I. 

"~ Note that in (43), [ ~(k - kq~) - ~b(k - m)]2 6(k + / -  m - ko) 6(c(k) + e(l) - ~(m) - c(kl,)) is 
the Born approximation to the scattering cross sectionJ k 2, 
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f 

f i 

J 

Fig. 5. Contributory terms for the two-body interaction. 

In first orde," 

itl  - = 0  ( 4 5 )  ~ l ~ ( A )  : =  l im 2 S ; _ 2 A A )  

by  T h e o r e m  2. 

h~ second order, in m o m e n t u m  space ,  the  t w o - b o d y  i n t e r a c t i o n  is [ he re  
v i k  - x q S ( k ) = ( 2 n ) -  ~ , . e  r  ) ]  

f 
~ 

V = l / 2  d k d l d m d n r  &(l)* ~(m)gt(n) 
- r g  

C o n s i d e r  first  [A[ = 2: A = a(f)*  a(g). T h e  s e c o n d - o r d e r  t e r m  is t hen  

S ~ 2 1 , ( a f * a  ) [ ( 2 g ) 2 / 2 ]  ;.-_~, ( . , )  ( g )  

().g)2/2 I] -:~ ,, 
= at, Io d._f dk,, ?(k,,)g(~o) 

x f dk dldm [~b(k - k o )  - • ( k -  m ) ]  2 6(k + l - m  - k o )  

x {~(k) ~( / ) [  1 - )~(m) ] [ 1 - )~(ko) ] 

- ~ ( k o )  ~ ( m ) [  1 - ~ ( k ) ]  [ 1 - )~(1) ] } 

x { e i~ q - ,_. Ic ~a k ~ + ,:(/) - ~.c,,,~ - ~lko~) + ei~ ,2 - ,~ I~ ~.(/,- ) + ~:(/) - ,:(,,,) - ,ak.~)} (46)  

Th i s  t e rm  c o r r e s p o n d s  to  the  g r a p h  in Fig .  5 ( a n d  the  c o r r e s p o n d i n g  g r a p h  
in w h i c h  the d i r e c t i o n s  o f  al l  a r r o w s  are  reversed) .  

N o w  

~c~(a( f )*  a(g)) := l im 22S~,. ,(a(f)  * a(g)) 
2 ' . ~ 0  



Fermi  Gas on a La t t i ce  in the  van Hove L im i t  843 

Hence we must evaluate the limit as 2 ~ 0 o f  (46 ) ,  which is of  the form 

2, f a--'~ f "  r f  ~-2~ 2 2 r  ~--,r - ~0 d l l  JO d t 2 f ( t , - / 2 )  = ~o d s f ( s ) -  ~o dss f (s)  (47) 

Now [see (41) with r = 2 ,  a 1 2 = 3 ]  

If(s)l ~< C ILK,. I1~ ~< C'( I + Isl '-"/2 +,, ~< C'( 1 + Isl) -3/2 § 

for v >/3. Thus I~'- If(s)~< or, and 

A.-2r  2 - 2 r  

)~2fo dssf(s)<~c'22~o ds(1 "~ S )  -- 1/2 + ~; " +  0 

as 2--*0. Hence as 2--+0, (47) converges to ) .J~; 'dsf(s) .  Consequently, 
using 

f '~- ds e i'' = 2nO(a) 
--cy. 

we obtain 

~r'-I(a(f) * a(g)) 

= ~ r  f dko f (ko)  ~(ko) f dk dl dm [ q ~ ( k - k o ) - ~ ( k - m )  ] 2 

x ~(k + l -  m - ko) ~(e(k) + e(l) - e(m) - e(ko)) 

x { ~(k) ~(/)[ 1 - ~(m)] [ 1 - ~(ko)] - ~(ko) ~(,n)[ 1 - ~(k)] [ 1 - ~(l)]} 

f dko f ( ko )  g(ko) ~2~ = 7~ (ko) 

where 

),~2;(ko) = nr f dk dl dm [ c~(k - ko) - c15(k - m)] 2 

x ~(k + l - m - k o) fi(e(k) + e(l) - e(m) - e(ko)) 

x {~(k) ~(l)[ I -- ~(m)] [ 1 -- ~(ko) ] 

- ~(ko)  ~(rn)[  1 - ~ ( k ) ]  [ 1 - ~ ( l ) ]  } (48 )  
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Now consider a general A: A -  ~ -a(fl) . . . a ( f , , , , , . ) .  Since for the terms 
corresponding to Fig. 5, ~ is made up only of creat ion-annihi lat ion 
oeprators from A, 

~ ' ( a ( f  , )~ . . . a(J;, , , , )  ) 

lim c2) )~ = 2 S  ~-._,(a(f ,  . . .  a(fz,,,,,) ~) 
2 ~ 1 1  

I I / l l  I I I i i  

= E o(e) s ~'?'(a(s a(s 1-[ s(a(f,.)~ a(L),) 
P / = 1  s = l  

. v : ~ /  

(49) 

where the sum is taken over all partitions of the set (1 ..... 2k) into k pairs 
(it,  Jl)  ..... (ik, Jk) with i.,. < j.,., il < i 2 <  ""  < ik ,  and a ( P )  is the parity of the 
permutat ion taking (1, 2 ..... 2k) into (i~ ,j~ ..... ik, Jk). 

Assuming ~ is quasifree, we expand in powers of g: 

~ (  a ( f  , )~ . . . a ( f  2,,,,,) ~) 

= T..(e) 
P 

m o 

Y. ~:(a(L)' a(!},)=) 
. v =  I 

m o 

=E o(e)Z 
P s = l  

{ ~ (a (~  ) ~ a(fy)  =) + g 2 ~ 2 ' ( a ( f ~ ) =  a(./)) =) + . . .  } 

m o 

= Z o(s) E g(<,(A): a(s 
P s =  I 

{ ,2, . } +g2 ~2 ~ G ( P )  ~ ,  (a(J,,) a(fj,)). I-I S ( a ( J ; ) a a ( J ) )  ~ ) , .  , + . . .  
/ =  I P s =  I 

.,.~/ (50) 

which agrees with (44), (45), and (49) and hence confirms that  up to 
second order, ~ is indeed quasifree. Now 

d ^~ d 
dr  y;(ko) = d~ { ~(ko) + g2~C~2'(ko) + . . .  } 

=g2  d 
~rr }3~'(k~ + "'" 
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t" 
= n g  2 J dk  dl d m [  ~ ( k  - ko) - ~ ( k  - m)  ] 2 ~(k  + l -  m - ko) 

• c~(e(k) + e(l) - e (m)  - e(ko)) 

x {) ')(k) ~ ( / ) [  1 - ~ ( m ) ]  [ 1 - )~(ko) ] 

-~(ko) ~(m)[1 - f(k)][  1 - ~ ( l ) ] }  + -.. 

by (48). This is just the Boltzmann equation (43) to second order in g. This 
proves Theorem 4. 

Remark 11. A different technique is required for the analogous 
result in the case of the continuum ~". Instead of/P-norms of the free 
evolution kernel, determinant inequalities for imaginary Gaussian integrals 
are used. The interaction has to be regularized so that the interaction den- 
sity is bounded. A complete analysis can be found in Chapter 4 of ref. 7. 
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